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X Ruud L. van den Brink,1,2 X Thomas Pfeffer,3 X Christopher M. Warren,1,2 X Peter R. Murphy,1,2

Klodiana-Daphne Tona,1,2 Nic J. A. van der Wee,2,4 X Eric Giltay,4 Martijn S. van Noorden,4 X Serge A.R.B. Rombouts,1,2,5

Tobias H. Donner,3,6,7* and X Sander Nieuwenhuis1,2*
1Institute of Psychology, Leiden University, 2333AK Leiden, The Netherlands, 2Leiden Institute for Brain and Cognition, 2333AK Leiden, The Netherlands,
3Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany, 4Department of
Psychiatry and 5Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands, 6Department of Psychology,
University of Amsterdam, 1012 WX, Amsterdam, The Netherlands, and 7Amsterdam Center for Brain and Cognition, Institute for Interdisciplinary Studies,
1001 NK Amsterdam, The Netherlands

The brain commonly exhibits spontaneous (i.e., in the absence of a task) fluctuations in neural activity that are correlated across brain
regions. It has been established that the spatial structure, or topography, of these intrinsic correlations is in part determined by the fixed
anatomical connectivity between regions. However, it remains unclear which factors dynamically sculpt this topography as a function of
brain state. Potential candidate factors are subcortical catecholaminergic neuromodulatory systems, such as the locus ceruleus-
norepinephrine system, which send diffuse projections to most parts of the forebrain. Here, we systematically characterized the effects of
endogenous central neuromodulation on correlated fluctuations during rest in the human brain. Using a double-blind placebo-
controlled crossover design, we pharmacologically increased synaptic catecholamine levels by administering atomoxetine, an NE trans-
porter blocker, and examined the effects on the strength and spatial structure of resting-state MRI functional connectivity. First,
atomoxetine reduced the strength of inter-regional correlations across three levels of spatial organization, indicating that catecholamines
reduce the strength of functional interactions during rest. Second, this modulatory effect on intrinsic correlations exhibited a substantial
degree of spatial specificity: the decrease in functional connectivity showed an anterior–posterior gradient in the cortex, depended on the
strength of baseline functional connectivity, and was strongest for connections between regions belonging to distinct resting-state
networks. Thus, catecholamines reduce intrinsic correlations in a spatially heterogeneous fashion. We conclude that neuromodulation is
an important factor shaping the topography of intrinsic functional connectivity.
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Introduction
The resting-state, here defined as periods during which a partic-
ipant is not engaged in a complex explicit task, is characterized by

fluctuations in neural activity that are correlated across brain
regions (Biswal et al., 1995; Leopold et al., 2003; Fox and Raichle,
2007; Hiltunen et al., 2014). Such spontaneous, correlated fluc-
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Significance Statement

The human brain shows spontaneous activity that is strongly correlated across brain regions. The factors that dynamically sculpt
these inter-regional correlation patterns are poorly understood. Here, we test the hypothesis that they are shaped by the cat-
echolaminergic neuromodulators norepinephrine and dopamine. We pharmacologically increased synaptic catecholamine levels
and measured the resulting changes in intrinsic fMRI functional connectivity. At odds with common understanding of catechol-
amine function, we found (1) overall reduced inter-regional correlations across several levels of spatial organization; and (2) a
remarkable spatial specificity of this modulatory effect. Our results identify norepinephrine and dopamine as important factors
shaping intrinsic functional connectivity and advance our understanding of catecholamine function in the central nervous system.
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tuations exhibit a rich spatial (Yeo et al., 2011) and temporal
(Allen et al., 2014; Zalesky et al., 2014) structure that is reflective
of the brain’s functional organization (Tavor et al., 2016). The
strength and spatial distribution of these correlated fluctuations
are predictive of behavior and pathological conditions (Greicius
et al., 2004; De Luca et al., 2005). Moreover, the global structure,
or topography, of correlated activity changes dynamically with
alterations in conscious state (Barttfeld et al., 2015) and task con-
ditions (Nir et al., 2006; Sepulcre et al., 2010). While the existence
and overall spatiotemporal structure of the spontaneous inter-
regional correlations are well established (Fox and Raichle, 2007),
uncertainty remains regarding the underlying physiological
mechanisms. It has been proposed that correlations across dis-
tant brain regions could be induced by brainstem neuromodula-
tory systems, and in particular the locus ceruleus-norepinephrine
(LC-NE) system, which sends diffuse, ascending projections to
the forebrain (Leopold et al., 2003; Drew et al., 2008; Schölvinck
et al., 2010), where noradrenergic terminals corelease dopamine
(DA) (Devoto and Flore, 2006). Here, we examined whether and
how the catecholaminergic neuromodulators NE and DA shape
correlated fluctuations during rest in the human brain.

A number of observations suggest that catecholamines should
generally increase the strength of functional connectivity. Both
iontophoretic NE application and DA agonism enhance neuro-
nal responses to excitatory synaptic input (Rogawksi and Aghaja-
nian, 1980; Seamans et al., 2001b; Wang and O’Donnell, 2001).
Furthermore, NE and DA can amplify synaptic GABAergic inhi-
bition (Moises et al., 1979; Seamans et al., 2001a). These and
other findings have led to the view that catecholamines boost the
efficacy of synaptic interactions between neurons (Berridge and
Waterhouse, 2003; Winterer and Weinberger, 2004), resulting in
an increased difference in firing rates between strongly and
weakly active neurons. Such signal amplification yields a system-
wide facilitation of signal transmission (Waterhouse et al., 1998).
Recent computational work suggests that this effect of cat-
echolamines should boost both positive and negative temporal
correlations between the activities of local groups of neurons,
resulting in stronger and increasingly clustered network connec-
tivity (Donner and Nieuwenhuis, 2013; Eldar et al., 2013). Puta-
tive behavioral and pupillary indices of heightened NE activity
have accordingly been shown to co-occur with stronger func-
tional coupling throughout the brain (Eldar et al., 2013). A first
consideration of the anatomy of the LC-NE system suggests that
these changes in functional connectivity might show little spatial
specificity. LC neurons exhibit tightly synchronous firing and
collateralize broadly, resulting in largely homogeneous cat-
echolaminergic innervation throughout the brain (Swanson and
Hartman, 1975; Aston-Jones et al., 1984; Ishimatsu and Williams,
1996; Berridge and Waterhouse, 2003).

In the present study, we systematically characterized catechol-
amine effects on the strength and spatial structure of resting-state
inter-regional correlations, measured with fMRI. Using a
double-blind placebo-controlled crossover design, we manipu-
lated catecholamine activity by administering a single dose of
atomoxetine, a selective NE transporter (NET) blocker. Within
the cortex, NET is also responsible for DA reuptake, due to the

cortical paucity of DA transporters (Devoto and Flore, 2006).
Thus, NET blockers increase both central NE and cortical DA
availability (Bymaster et al., 2002; Devoto et al., 2004; Swanson et
al., 2006; Koda et al., 2010). We systematically quantified cate-
cholamine effects on functional connectivity: globally, between
brain networks, and at the level of individual connections be-
tween brain regions. In contrast to the notion of a catecholamine-
induced homogeneous increase in functional connectivity, we
found that atomoxetine reduced correlations across most pairs of
brain regions. Most remarkably, atomoxetine altered the strength
of inter-regional correlations in a highly spatially specific man-
ner. These results have important ramifications for our under-
standing of resting-state activity and central catecholaminergic
function.

Materials and Methods
Participants. Neurologically healthy right-handed individuals (N � 24,
age 19 –26 years, 5 male) were recruited and medically screened by a
physician for physical health and drug contraindications. Exclusion cri-
teria included: standard contraindications for MRI; current use of psy-
choactive or cardiovascular medication; a history of psychiatric illness or
head trauma; cardiovascular disease; renal failure; hepatic insufficiency;
glaucoma; hypertension; drug or alcohol abuse; learning disabilities;
poor eyesight (myopia � �6 diopters); smoking �5 cigarettes a day; and
pregnancy. All participants gave written informed consent before the
experiment and screening, and were compensated with €135 or course
credit.

Design and functional MRI data. We used a double-blind placebo-
controlled crossover design. In each of two sessions, scheduled 1 week
apart at the same time of day, participants received either a single oral
dose of atomoxetine (40 mg) or placebo (125 mg of lactose monohydrate
with 1% magnesium stearate, visually identical to the drug). Elsewhere,
we report data showing that the atomoxetine treatment significantly in-
creased salivary levels of cortisol and � amylase, reliable markers of sym-
pathetic nervous system and hypothalamus-pituitary-adrenal axis
activation, respectively (C. M. Warren, R. L. van den Brink, S. Nieuwen-
huis, and J. A. Bosch, unpublished observations), thus confirming drug
uptake. In both sessions, participants were scanned once before pill in-
gestion (t � �20 min) and once at t � 90 min, when approximate
peak-plasma levels are reached. The interaction contrast (postatomox-
etine � preatomoxetine) minus (postplacebo � preplacebo) allowed us
to examine the effects of atomoxetine while controlling for other session-
related differences. Each scan comprised 8 min of eyes-open resting-state
fMRI. During scanning, the room was dark, and participants fixated on a
black fixation cross presented on a gray background.

MRI data collection and preprocessing. All MRI data were collected with
a Philips 3T MRI scanner. In each of the scanning sessions, we collected a
T2*-weighted EPI resting-state image (echo time 30 ms, repetition time
2.2 s, flip angle 80°, FOV 80 � 80 � 38 voxels of size 2.75 mm isotropic,
and 216 volumes). To allow magnetic equilibrium to be reached, the first
5 volumes were automatically discarded.

In addition, each time the participant entered the scanner, we collected
a B0 field inhomogeneity scan (echo time 3.2 ms, repetition time 200 ms,
flip angle 30°, and FOV 256 � 256 � 80 voxels with a reconstructed size
of 0.86 � 0.86 mm with 3-mm-thick slices). Finally, at the start of the first
session, we collected a high-resolution anatomical T1 image (echo time
4.6 ms, repetition time 9.77 ms, flip angle 8°, and FOV 256 � 256 � 140
voxels with size 0.88 � 0.88 mm with 1.2-mm-thick slices).

We used tools from the FMRIB Software Library for preprocessing
of the MRI data (Smith et al., 2004; Jenkinson et al., 2012). EPI scans
were first realigned using MCFLIRT motion correction and
skull-stripped using BET brain extraction. We used B0 unwarping to
control for potential differences in head position each time the par-
ticipant entered the scanner and resulting differences in geometric
distortions in the magnetic field. The B0 scans were first reconstructed
into an unwrapped phase angle and magnitude image. The phase
image was then converted to units radians per second and median-
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filtered, and the magnitude image was skull-stripped. We then used
FEAT to unwarp the EPI images in the y-direction with a 10% signal
loss threshold and an effective echo spacing of 0.332656505.

The unwarped EPI images were then high-pass filtered at 100 s, pre-
whitened, smoothed at 5 mm FWHM, and coregistered with the anatom-
ical T1 to 2 mm isotropic MNI space (degrees of freedom: EPI to T1, 3;
T1/EPI to MNI, 12). Any remaining artifacts (e.g., motion residual,
susceptibility-motion interaction, cardiac and sinus artifacts) were re-
moved using FMRIB’s ICA-based X-noiseifier (Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014) with pretrained weights (Standard.RData).
Noise classification performance was checked afterward, by manually
classifying components as “signal,” “noise,” or “unknown.” Then, the
accuracy of the automated artifact detection algorithm was quantified as
the percentage of components that had the label “noise” in both classifi-
cations. The accuracy was found to be 96.4% correct. All subsequent
analyses were conducted in MATLAB 2012a (The MathWorks).

Physiological recordings and correction. We recorded heart rate using a
pulse oximeter and breath rate using a pneumatic belt at 500 Hz during
acquisition of each EPI scan. We used these time series for retrospective
image correction (RETROICOR) (Glover et al., 2000). This method as-
signs cardiac and respiratory phases to each volume in each individual
EPI time series, which can then be removed from the data. The physio-
logical time series were first down-sampled to 100 Hz. Next, the pulse
oximetry data were bandpass filtered between 0.6 and 2 Hz, and the
respiration data were low-pass filtered at 1 Hz, using a two-way FIR filter.
We then extracted peaks in each time series corresponding to maximum
blood oxygenation and maximum diaphragm expansion. The interpeak
intervals were then converted to phase time by linearly interpolating
across the intervals to between 0 and 2�. Next, we used these phase time
series to extract the sine- and co-sine components of the dominant and
first harmonic Fourier series of each signal. After down-sampling to the
EPI sample rate, this yielded 8 regressors (4 cardiac and 4 respiratory)
that could then be used to remove cardiac and respiratory effects from
the BOLD time series using multiple linear regression. The findings re-
ported here were based on noncorrected data, but we replicated all of our
results using the RETROICOR-corrected data (see Results).

Pupillometry. Pupil size was measured from the right eye at 500 Hz
with an MRI-compatible Eyelink 1000 eye tracker. Blinks and other ar-
tifacts were interpolated offline using shape-preserving piecewise cubic
interpolation. Pupil data were low-pass filtered at 5 Hz to remove high-
frequency noise and Z-scored across conditions. Five participants were
excluded from pupil-related analyses due to poor signal quality (�50%
of continuous time series interpolated) or missing data. Of the remaining
participants, on average 20% (SD 9%) of the data were interpolated.

Brain parcellation and connectivity. Time series of brain regions were
extracted for the 90 regions of the Automated Anatomical Labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002) (see Fig. 1a). We did not
include the cerebellum because it was not fully inside the FOV for all
participants. Following averaging across voxels within each brain region,
time series ( M) for each run i were Z-scored and correlation matrices ( R)
were computed between them via the following:

Ri �
Mi� � Mi

nTR � 1

where � denotes transposition and nTR is the number of volumes (211).
Because positive and negative correlations jointly determine a network’s
functional organization (Fox et al., 2005), many prior studies have used
the absolute value of the correlation coefficient to describe functional
interactions (Achard and Bullmore, 2007; Eldar et al., 2013; Li et al.,
2013). Moreover, computational work suggests that catecholamines
should boost temporal correlations regardless of their sign (Donner and
Nieuwenhuis, 2013; Eldar et al., 2013). We therefore used the absolute
correlation coefficient as our measure of connectivity strength. The
signed and absolute matrices were very similar because anticorrelations
were rare (mean 3.4% of all connections, SD 3.5%), as is common when
no global signal regression has been performed. In the group- and
condition-averaged correlation matrix, 0.28% were anticorrelations (11
of 4005 unique connections; see Fig. 1b). To facilitate comparisons of

values across participants, we range-normalized each participant’s abso-
lute correlation matrices between 0 and 1 across the 4 conditions. This
procedure discarded the between-participant variance while leaving the
spatial structure and between-condition variance intact.

In addition, for the postatomoxetine condition time-resolved connec-
tivity (Allen et al., 2014) was computed for 189 tapered windows w of
length nw (22 volumes) via the following:

Rwi �
Mwi� � Mwi

nw � 1

The taper was created by convolving a Gaussian (SD 3 TRs) with a rect-
angle. Rwi was Fisher-transformed to stabilize variance across windows.
We then again used the absolute value as our measure of connectivity
strength. An identical sliding window was applied to the pupil diameter
data in the postatomoxetine condition such that for each window in Rwi

there was a corresponding value of pupil size during that window. Then,
we divided up pupil size into 3 equal-sized bins and averaged the corre-
sponding values in Rwi for each pupil bin separately. To rule out the
possibility that the results depended on the choice of bin size, we also
tried alternate bin sizes (2, 5, and 7 bins) and found similar effects.

Graph-theoretical analysis of global correlation structure. For each con-
dition, we constructed a binary undirected (adjacency) matrix A. We did
this by first concatenating the correlation matrices across participants
such that for each condition we had a brain region by brain region by N
(90 � 90 � 24) matrix of connectivity. We then assessed with a t test
across the participant dimension for each element y, x in the connectivity
matrix whether its value differed significantly from the average of its row
y or column x (Hipp et al., 2012). In other words, for each connection, we
obtained a distribution across participants of weighted values, and two
distributions corresponding to the mean weighted values of each brain
region that was linked by that particular connection. The connection
distribution was then compared with each of the brain region distribu-
tions with a t test. If either of the two comparisons was significant, the
connection was scored as 1, and otherwise it was scored as 0. The � level
was set to 0.01, Bonferroni-corrected for two comparisons to 0.005
(Hipp et al., 2012).

This procedure, as opposed to simply applying a fixed-percentage
threshold, results in adjacency matrices that can differ in the number of
connections between conditions, and therefore allows the assessment of
correlation structure, or degree. We thus quantified the global degree k in
each condition as the average across the adjacency matrix (Hipp et al.,
2012) via the following:

k � n�1�
x�1

n

n�1�
y�1

n

A�x, y�

where n is the number of brain regions in the AAL atlas.
To test the prediction that increased catecholamine levels should result

in stronger functional connectivity, we used k as our measure of connec-
tivity strength rather than relying on the mean weighted values (i.e., the
average of Ri). The binarization of weighted graphs is common in func-
tional network analysis (Achard and Bullmore, 2007; Rubinov and
Sporns, 2010; Hipp et al., 2012; Li et al., 2013) and is intended to preserve
only the strongest (most probable) connections. This ensures that weak
edges, which are more likely to be spurious (Rubinov and Sporns, 2010),
do not convolute the global mean. Given that these edges are less likely to
reflect true neurophysiological interactions, they are less likely to be sen-
sitive to any experimental manipulation that is specifically intended to
alter neurophysiology (in our case, drug intake). Thus, excluding these
connections decreases the likelihood of false negatives in between-
condition comparisons of the global mean. In addition, by treating
each connection equally (either present or absent), the global mean is not
disproportionally influenced by extremely strong connections that are
more likely to decrease in strength after an experimental manipulation by
virtue of regression toward the mean.

Furthermore, by defining adjacency matrices using a statistical test
across participants, each connection that is present in the adjacency ma-
trix is ensured to be reliably expressed across the group of participants for
a given condition. Thus, the adjacency matrices are representative of the
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group-level topography of connectivity. We used two measures of clus-
tering, defined using these group-level adjacency matrices, to test the
prediction that an increase in central catecholamine levels should be
accompanied by more strongly clustered network connectivity. The clus-
tering coefficient C was quantified as the average fraction of triangles �
around a node, the latter given by the following:

�x � 2�1�A�x, y� A�x, z� A� y, z�, where y, z � N

and N represents the total set of nodes. C was then given by the following:

C � n�1�
y�1

n

n�1�
x�1

n 2�x

kx�kx � 1�

The clustering coefficient here is equivalent to the average proportion of
the node’s neighbors that are in turn neighbors to each other (Watts and
Strogatz, 1998; Rubinov and Sporns, 2010). Thus, the clustering coeffi-
cient represents the mean fraction of clustering around each node.

Because C is normalized by degree (k) individually per node, it may be
biased by nodes with a relatively low k. We therefore also included a
measure of clustering that is normalized by k collectively and hence does
not suffer from the same potential bias. This measure is known as tran-
sitivity ( T), and is given by the following:

T �
�
x�1

n

2�x

�
x�1

n

kx�kx � 1�

This is equivalent to the ratio of triangles to triplets in the network. Both
clustering coefficient and transitivity capture the extent to which the
network is segregated in terms of processing because a large number of
triangles implies functional clustering. These two measures were com-
puted using the Brain Connectivity Toolbox (Rubinov and Sporns,
2010). Both clustering and transitivity are (partially) dependent on
global degree (van Wijk et al., 2010).

To test statistically whether degree, clustering coefficient and transi-
tivity differed between conditions, we used nonparametric permutation
testing. We shuffled the condition labels for each participant before com-
puting the adjacency matrices and then computed the graph-theoretical
measures. This was done for 10,000 iterations to produce a null distribu-
tion. We then derived a p value for each contrast by dividing the number
of null observations less extreme than the observed contrast by the total
number of null observations, and subtracting this value from 1.

Network identification via community detection. We used the Louvain
method for community detection optimized for stability (Blondel et al.,
2008; Le Martelot and Hankin, 2013) to classify each brain region as
belonging to a particular network, or module. This method works by
maximizing the number of within-group connections (edges) while min-
imizing the number of between-group connections via greedy optimiza-
tion. We first defined an adjacency matrix As by concatenating the
condition-averaged correlation matrices across participants, and then
statistically comparing each element y,x to the average of its row y or
column x, similar as described above. However, to accurately classify
networks, we needed to retain only those connections that were most
informative about community structure. We therefore promoted spar-
sity in the condition-averaged adjacency matrix by defining it using a
one-tailed t test with a conventional � level (0.05) and a correction for
multiple comparisons using the false discovery rate (FDR). This pre-
served only those connections that were consistently the strongest across
participants (16.9% of all possible connections). We then submitted this
sparse condition-averaged adjacency matrix to the Louvain community
detection algorithm. The optimization procedure (Le Martelot and
Hankin, 2013) ensured a stable solution across multiple runs of the
algorithm. In the optimization procedure, the Markov time acts as a
resolution parameter that determines the community scale, and thus the
number of modules that the algorithm will return. This parameter was set
to 0.9, resulting in 6 separate modules. We set the number of modules to
be detected to 6 because, given the relatively coarse anatomical layout of
the AAL atlas, this number yielded a relatively reliable modular organi-

zation. The community detection and optimization resulted in a “mod-
ule number” for each AAL brain region indicating to which module it
belonged, and a single Q value indicating the strength of modularity.

We first verified whether the Q value was significantly higher than
chance. To do so, we generated 10,000 randomized null networks with an
identical size, density, and degree distribution as As (Maslov and Snep-
pen, 2002), and submitted them to Louvain community detection and
optimization to produce a null-distribution of Q values. We then derived
a p value for the observed modularity by dividing the number of null Q
values less extreme than the empirical Q value by the total number of null
Q values, and subtracting it from 1.

The observed Q value of 0.46 was significantly higher than chance
( p 	 0.001), showing that group-average connectivity was strongly mod-
ular. We then visualized the modular structure by rearranging the
condition-averaged correlation matrix by module. The assignment of
brain regions to modules corresponded closely to a number of well-
characterized intrinsic connectivity networks, indicating that the modu-
lar structure reflected a functionally meaningful grouping of brain
regions.

Graph-theoretical analysis of network structure. The procedure de-
scribed above allowed us to group brain regions into modules of intrin-
sically coupled AAL brain regions. We could then use these modules to
assess changes in the structure of intrinsic correlations at the within- and
between-network level, rather than as a function of the system in its
entirety. To do this, we first rearranged the condition-specific adjacency
matrices by their module number, and computed average degree of ele-
ments within and between modules via the following:

km � na

�1 �
xa�1

na

nb
�1 �

yb�1

nb

As�xa, yb�

where na is the number of brain regions belonging to module a and nb is
the number of brain regions in module b. This yielded, for each condi-
tion, a symmetric and module-by-module matrix of continuous average
degree values, in which values on the diagonal indicated the average
number of connections within each module, and each value around the
diagonal indicated the average number of connections between a com-
bination of modules.

We could then use these “module matrices” to test for atomoxetine-
related changes in degree of the connections within modules, and the
connections linking different modules. This allowed us to characterize
changes in connectivity in a spatially more specific way than for global
degree. We again used nonparametric permutation testing, similar as
described for global degree, except that it was done for individual ele-
ments within the module matrices.

Control analyses using an alternate atlas and multiple thresholds. To rule
out the possibility that our results were specific to the use of the AAL atlas, we
repeated all of our key analyses using the atlas made available by Craddock et
al. (2012), which comprised 87 distinct regions after excluding the cerebel-
lum, and found similar effects in terms of both direction and significance.
Moreover, to verify that our results were independent of the statistical
threshold used to define the adjacency matrices, we conducted a control
analysis in which a range of adjacency matrices was created per condition
with varying condition-averaged connection densities (40%–75%). This was
done by progressively raising/lowering the � level of the t test that was used to
determine whether a connection is present or absent (see above). Then, for
each threshold we computed the graph-theoretical measures, and for each
condition and measure separately calculated the area under the curve across
thresholds. This allowed us to compare the area under the curve between
conditions with permutation testing (10,000 iterations). For all measures,
the critical interaction contrast was significant and in the same direction as
our original findings (see Results).

Controlling for regression toward the mean. The correlation between
baseline coupling strength and the atomoxetine-related change in cou-
pling strength (see Fig. 3e; see Results) is confounded by regression to-
ward the mean. That is, if two particular brain regions show strong
baseline coupling, then simply by chance they are more likely to show a
reduction under atomoxetine, and so a negative correlation is likely to
occur. We therefore controlled for regression toward the mean using
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permutation testing. For 10,000 permutations, we shuffled the condition
labels across participants before computing the atomoxetine-related
change in coupling strength. We then computed the correlation between
baseline coupling and atomoxetine-related change in coupling to pro-
duce a distribution of correlation coefficients under the null hypothesis
of regression toward the mean. Finally, we derived a p value for the
empirical correlation coefficient by dividing the number of null observa-
tions less extreme than the correlation coefficient by the total number of
null observations, and subtracting this value from 1. This p value indi-
cated the significance of the observed correlation coefficient beyond re-
gression toward the mean.

Analysis of BOLD signal variance. We calculated for each participant
and each AAL brain region the fractional amplitude (i.e., variance) of
low-frequency fluctuations in the non-Z-scored BOLD time series
(fALFF) (Zou et al., 2008). This measure indexes the relative contribu-
tion of low-frequency (0.01– 0.08 Hz) fluctuations to the total amplitude
spectrum. We compared fALFF between conditions using repeated-
measures ANOVA. Additionally, for each participant, we correlated the
atomoxetine-related change in fALFF with the atomoxetine-related
change in inter-regional correlation strength across AAL brain regions.
We then compared the distribution of Fisher-transformed correlation
coefficients to zero using a two-tailed t test. Very similar results were
obtained using alternative measures of variance (e.g., average 0.01– 0.08
Hz amplitude or the signal SD rather than fractional amplitude).

Results
Atomoxetine reduces global degree and clustering
In a first set of analyses, we examined the effect of atomoxetine on
graph-theoretical summary measures of functional connectivity

strength. We parcellated each participant’s brain into 90 separate
regions according to the AAL atlas (Tzourio-Mazoyer et al., 2002)
(Fig. 1a) and computed the correlation between the Z-scored
time series of all pairs of regions (Fig. 1b). We then took the
absolute correlation coefficient as our measure of functional
connectivity strength (see Materials and Methods). In general,
functional connectivity was strongest between visual cortical
areas and between homolog areas in both hemispheres (Fig.
1b), consistent with a host of previous work (Fox and Raichle,
2007).

For each condition (preplacebo, postplacebo, preatomox-
etine, postatomoxetine), we constructed a binary matrix of con-
nections (edges) between pairs of brain regions that consistently
differed in strength across participants from the average of other
connections involving either of the two brain regions (following
Hipp et al., 2012). Graph theory allowed us to capture different
properties of these matrices of intrinsic correlations in a small
number of diagnostic scalar quantities (Bullmore and Sporns,
2009; Rubinov and Sporns, 2010). Specifically, we assessed three
such measures: the global degree, which indexes the number of
strongly correlated regions (above a certain threshold; see Mate-
rials and Methods) in the network, and two descriptors of the
extent to which network connectivity is clustered in segregated
local groups of brain regions: clustering coefficient and transitiv-
ity, both of which are (partially) dependent on the strength of
connectivity (van Wijk et al., 2010; Eldar et al., 2013). If cat-

Figure 1. Inter-regional correlation and global graph-theoretical results. a, Topography of the AAL atlas. Each brain region within hemispheres has a unique color. b, Condition-averaged
inter-regional correlation. Both the signed and absolute values are shown. Color labels on the left and bottom axes represent brain regions in a. c, Atomoxetine-related effects on global
graph-theoretical measures. Error bars indicate the SD of the bootstrapped null-distribution. n.s., Not significant. *p 	 0.05. **p 	 0.01. ***p 	 0.001.
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echolamines increase global functional connectivity, then atom-
oxetine should increase all three measures.

Figure 1c shows that atomoxetine significantly reduced the
number of strong correlations present in the network, as indi-
cated by lower global degree. This was reflected in a significant
interaction between treatment and time (p � 0.039). A similar
pattern of results was found for the two measures of clustering,
both of which decreased in magnitude (Fig. 1c): clustering coef-
ficient (p � 0.043) and transitivity (p � 0.048). Thus, atomox-
etine reduced the number of strongly correlated brain regions, as
well as the extent to which correlated brain regions formed local
functional ensembles. Together, these results show that atomox-
etine decreases, rather than increases, overall inter-regional cor-
relations in the brain at rest.

Atomoxetine reduces internetwork degree
Many studies of resting-state activity in humans have revealed a
consistent set of groups, or modules, of brain regions that are
characterized by strong coupling between brain regions belong-
ing to the same module, and weaker coupling between brain
regions belonging to different modules (Bullmore and Sporns,
2009). These modules are often referred to as “intrinsic func-
tional connectivity networks” (Fox and Raichle, 2007). In a next
set of analyses, we investigated atomoxetine-related changes in

the strength of functional connectivity within and between these
networks.

To do this, we arranged the connectivity matrix by network
(Fig. 2a) (Blondel et al., 2008). This resulted in 6 functional net-
works that correspond closely to previously reported resting-
state networks (Yeo et al., 2011; Zalesky et al., 2014). Based on their
topography (Fig. 2b), we termed them: default; somatomotor; vi-
sual; subcortical; inferior-frontal; and frontoparietal networks. We
then calculated the average number of connections within and be-
tween these networks, resulting in a 6 � 6 network degree matrix for
each condition (Fig. 2c,d). Finally, we examined atomoxetine-
related changes in within- and between-network degree using per-
mutation testing. This allowed us to explore whether changes in
functional connectivity occurred in intranetwork or internetwork
connections. The atomoxetine-related reduction in global degree
(Fig. 1c) is visible in the network degree matrices as an overall in-
crease in “brightness” in Figure 2d (right).

Consistent with the decrease in global degree reported above,
we observed only atomoxetine-related reductions in network de-
gree (Fig. 2e). The interaction between treatment and time was
significant for the connections between the visual and somato-
motor networks (p 	 0.001), between the visual and frontopari-
etal networks (p � 0.044), and between the frontoparietal and
default networks (p 	 0.001). After using the FDR (q � 0.05) to

Figure 2. Intrinsic connectivity networks and changes in graph-theoretical measures of network structure. a, Condition-averaged inter-regional correlation arranged by network. The networks
are outlined in blue. b, Topography of functional networks. Colors correspond to the labels in a. c, Condition-specific adjacency matrices arranged by network. Black elements indicate that a
connection is present. d, Average degree for within- and between-network connections. To facilitate visual comparison, the size of each network is the same as in c. However, all statistical
comparisons were conducted on symmetrically sized matrices in which each network contributed equally to the global mean. e, Atomoxetine-induced changes in degree for connections within and
between networks. Shades of gray represent the value of the interaction contrast (postatomoxetine � preatomoxetine) minus (postplacebo � preplacebo). Significant ( p 	 0.05) changes in
degree are outlined in red.
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correct for multiple comparisons, all connections, except the
connection between the visual and frontoparietal networks, re-
mained significant. However, when comparing the area under
the curve across a range of thresholds (see Materials and Meth-
ods), all connections remained significant after FDR correction.

Interestingly, all significant reductions in network degree
were in connections between (as opposed to within) functional
networks. Thus, the most robust decreases in functional coupling
occurred for connections linking functionally dissociable groups
of brain regions. These results corroborate the conclusion drawn
above: that atomoxetine decreased inter-regional correlations in
the brain at rest. More importantly, these results provide a first
indication that this reduction in inter-regional correlations is not
spatially homogeneous across the brain. In the following, we fur-
ther characterize the spatial heterogeneity of the atomoxetine-
induced reductions in inter-regional correlations.

Regionally specific reductions and baseline-dependent
changes in connectivity with atomoxetine
Having assessed the topographical changes induced by atomox-
etine at the global level and the level of functional networks, we
next assessed differences in the strength of inter-regional corre-
lations at the level of individual connections between brain re-
gions, using the absolute correlation coefficient. We found that
atomoxetine altered correlation strength in a strikingly struc-
tured fashion (Fig. 3a): In general, connectivity was reduced by
atomoxetine, especially in posterior brain regions (Fig. 3b). These
observations align with our findings of reductions in internet-

work degree involving the visual system. To quantify these effects,
we used a two-step procedure. Specifically, we first derived a set
of data-driven hypotheses by identifying, in the first half of the
fMRI volumes, the limited number of individual connections
that exhibited an atomoxetine-related change in connectivity
that was reliable across participants (p 	 0.05, using a two-tailed
t test), thereby reducing the number of comparisons for the sub-
sequent step. We then retested those connections using the (in-
dependent) second half of the volumes and selected those that
again showed a systematic atomoxetine-related change in corre-
lation strength (p 	 0.005, two-tailed). Atomoxetine signifi-
cantly lowered correlation strength in a cluster of occipital brain
regions (Fig. 3c,d), specifically correlations between left calcarine
cortex and right calcarine cortex/bilateral lingual gyrus; between
left cuneus and right calcarine cortex/lingual gyrus; between left
lingual gyrus and right calcarine cortex/lingual gyrus; and be-
tween right lingual gyrus and right calcarine cortex/right fusi-
form gyrus. These contiguous connections remained significant
after applying a highly conservative cluster size threshold (p 	
0.0001), obtained by generating a distribution of maximum clus-
ter sizes under the null hypothesis with permutation testing
(Nichols and Holmes, 2002). Thus, the cluster involved signifi-
cantly more connections than would be expected by chance.

We did not find significant changes in connectivity between
structures of the basal ganglia, which have been widely studied in
relation to catecholaminergic drug effects (Sulzer et al., 2016).
This lack of an atomoxetine-related effect in the human basal
ganglia is consistent with the observation that the basal ganglia

Figure 3. Atomoxetine-related effects on inter-regional correlation. a, Region-by-region matrix of atomoxetine-related changes in inter-regional correlation strength. Colors represent the value
of the interaction contrast (postatomoxetine � preatomoxetine) minus (postplacebo � preplacebo). Blue represents reduced correlation following atomoxetine. The matrices are organized
following Figure 1b. b, Atomoxetine-related effect on the absolute inter-regional correlation coefficient, rendered in 3D with an arbitrary threshold applied. White dashes in the color bar indicate
threshold. Spheres are placed in the center of mass of their respective AAL atlas regions. Both the size and color indicate the average atomoxetine-related effect on coupling (i.e., the average across
rows or columns in a). c, Transverse (top is anterior) and sagittal (right is anterior) view on 3D rendering of significant correlation changes, resulting from the whole-brain two-step analysis.
Individual connections that changed significantly with atomoxetine are plotted as cylinders between the corresponding regions. d, Inter-regional correlation in each condition, averaged across the
significant connections shown in c. Error bars indicate the SEM. e, Correlation between baseline inter-regional correlation strength (collapsed across preplacebo and preatomoxetine) and change
with atomoxetine. Each dot represents a unique region-by-region connection. Self-connections were excluded.
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receive relatively sparse noradrenergic innervation (Aston-Jones
et al., 1984), and with findings that atomoxetine has little effect
on DA levels within the basal ganglia of rodents (Bymaster et al.,
2002). Indeed, unlike in the cortex, in the basal ganglia there is an
abundance of DA transporter (Sulzer et al., 2016), so DA re-
uptake is not dependent on the NE transporter. Thus, our finding
that atomoxetine reduced the strength of inter-regional corre-
lations in (predominantly visual) cortical areas is consistent with
the specific effect of atomoxetine on synaptic catecholamine lev-
els within the cortex.

In sum, atomoxetine lowered the strength of correlations be-
tween visual cortical brain regions (Fig. 3c), regions that on aver-
age showed strong connectivity (Figs. 1b, 2a). This raises the
question whether the atomoxetine-induced change in connectiv-
ity was dependent on the baseline level of connectivity between
any pair of brain regions. To address this question, we correlated
weighted coupling strength collapsed across the preplacebo and
preatomoxetine conditions (i.e., baseline connectivity) with the
coupling change following atomoxetine (controlling for regres-
sion toward the mean with permutation testing). The obser-
ved correlation between baseline connectivity strength and the
change with atomoxetine was significant (r � �0.22, p � 0.029;
Fig. 3e). This indicates that the strongest functional connections
tended to show the largest connectivity reductions after atomox-
etine, and vice versa.

Atomoxetine induces decoupling of early visual cortex from
the rest of the brain
As noted above, atomoxetine reduced correlations between oc-
cipital brain regions. To establish whether these occipital regions
also showed reduced coupling to the rest of the brain, as sug-
gested by visual inspection (Fig. 3b), we computed a summary
statistic (median) of correlation strength between early visual
(pericalcarine) cortex and all other AAL atlas regions. There were
no differences between left and right early visual cortex, so we
collapsed the data across hemispheres.

Average connectivity seeded from early visual cortex is shown
in Figure 4a. Atomoxetine reduced connectivity between early
visual cortex and the rest of the brain, as reflected by a significant
interaction between treatment and time (F(1,23) � 5.31, p �
0.031; Fig. 4b,c). The only significant pairwise comparison was
postatomoxetine versus preatomoxetine (t(23) � 2.34, p � 0.028).
Together, these results suggest that the early visual cortical areas

not only decoupled from each other following atomoxetine (Fig.
3c) but also from the rest of the brain.

The results of our analyses at the level of individual connec-
tions between brain regions converge with those at the global
level and at the level of networks of brain regions, showing that
atomoxetine decreased functional connectivity. In addition,
the results show that atomoxetine modulated functional con-
nectivity in a highly regionally specific fashion, with more
robust changes in visual cortex than in other brain areas.

Excluding alternative explanations
In five sets of control analyses, we ruled out the possibility that the
atomoxetine-related changes in inter-regional correlations were
driven either by local changes in BOLD variance, by retinal effects
due to pupil dilation associated with atomoxetine, by head mo-
tion, by saccade-related retinal transients, or by atomoxetine-
induced changes in physiology (heart rate and breath rate). First,
the correlation coefficient between two signals is their covariance
normalized by the signals’ variances. Thus, it is possible that the
observed changes in inter-regional correlations are caused by lo-
cal changes in variance alone (Haynes et al., 2005; Freeman et al.,
2011), rather than by changes in covariance (i.e., the degree to
which the BOLD signals in two regions fluctuated together). If
this is the case, then the atomoxetine-related change in average
inter-regional correlation and the atomoxetine-related change in
BOLD signal variance should be negatively correlated across
brain regions. Instead, we found a positive relationship between
changes in inter-regional correlation and changes in BOLD vari-
ance, which was consistent across participants (t(23) � 3.36, p �
0.003; Fig. 5), ruling out variance as a confound. Moreover, there
was no interaction between treatment and time in overall BOLD
variance (F(1,23) � 0.71, p � 0.40), or in variance for only the
occipital brain regions that showed reduced atomoxetine-related
inter-regional correlation (F(1,23) � 0.41, p � 0.53).

Second, because atomoxetine increased the size of the pupil
(Fig. 6a), it is conceivable that this peripheral effect, rather than
the effect of atomoxetine on central catecholamine levels, was
driving the changes in inter-regional correlation in visual cortex
(Haynes et al., 2004). To examine this potential confound, we
binned inter-regional correlation by pupil size in the postato-
moxetine condition, focusing on those correlations that showed a
significant reduction under atomoxetine. If larger pupil size is
responsible for the reduction in correlations, then time periods

Figure 4. Atomoxetine reduces correlation strength between early visual (pericalcarine) cortex and the rest of the brain. a, Topography of condition-averaged correlation seeded from left and
right early visual cortex. b, Topography of atomoxetine-related effects on correlation seeded from left and right early visual cortex. Colors represent the value of the interaction (postatomoxetine �
preatomoxetine) minus (postplacebo � preplacebo). c, Median correlation values across the brain seeded from left and right early visual cortex. Error bars indicate the SEM.
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during which the pupil is large should be associated with weaker
correlations than time periods during which the pupil is small.
Interestingly, we found the opposite pattern (Fig. 6b,c): stronger
correlations for large pupil (t(18) � 2,84, p � 0.010), ruling out an
interpretation in terms of pupil size.

Third, head motion can have a strong influence on the
strength of inter-regional correlations (Van Dijk et al., 2012). To
rule out the possibility that our key finding of atomoxetine-
related changes in inter-regional correlation was driven by head
motion, we first compared head motion between conditions.
Neither mean head motion nor mean absolute head motion dif-
fered between conditions (all p values �0.05). No participant’s
head motion exceeded 2 mm, indicating that overall there was
little head motion. However, general mild head motion tends to
increase correlations between proximate areas and decrease con-
nectivity between distant areas (Van Dijk et al., 2012). Thus, head
motion can potentially lead to spatially heterogeneous effects on
connectivity in a manner that is related to the distance between
brain areas. To rule out the possibility that the spatial structure of
atomoxetine-related changes in connectivity was driven by subtle
(nonsignificant) differences in head motion between conditions,
we correlated Euclidean distance between the center of mass of
each pair of AAL brain areas and the strength of functional con-
nectivity between those areas, for each participant and each con-
dition. We then compared the distribution of Fisher-transformed
correlation coefficients between conditions. If head motion is
responsible for the observed change in connectivity between con-
ditions, then the correlation between Euclidean distance and
strength of connectivity should also differ between conditions.
However, we did not find any differences between conditions (all
p values �0.05), ruling out head motion as a confound.

Fourth, it is possible that that the atomoxetine-related reduc-
tion in the strength of correlation between visual cortical areas
occurred due to differences between conditions in saccade-
related retinal transients. To rule out this possibility, we extracted
several eye movement metrics from the eye tracker gaze position
data using the EYE-EEG toolbox (Dimigen et al., 2011). There
was no interaction between treatment and time for any of the
metrics: the number of saccades (F(1,18) � 0.47, p � 0.50), median
saccade amplitude (F(1,18) � 0.45, p � 0.51), median saccade
duration (F(1,18) � 0.11, p � 0.74), or median saccade peak ve-
locity (F(1,18) � 3.32, p � 0.085). This latter trend was driven by a
numeric difference between the preplacebo and postplacebo

conditions. Preatomoxetine and postatomoxetine did not differ
significantly in saccade peak velocity (t(18) � �0.43, p � 0.67).
Together, these results show that our key result of an
atomoxetine-related reduction in the strength of correlation be-
tween visual cortical regions was unlikely to be driven by saccade-
related retinal transients.

Finally, atomoxetine significantly increased breath rate
(F(1,23) � 8.96, p � 0.007) and heart rate (F(1,23) � 4.66, p �
0.041), as reflected by a significant interactions between treat-
ment and time. We therefore corrected the BOLD time series
using the RETROICOR method (see Materials and Methods)
(Glover et al., 2000). The average R 2 of the physiology regressors
was relatively low (0.034), indicating that physiology accounted
for a small proportion of the total BOLD variance (which was
likely the result of artifact removal by FMRIB’s ICA-based
X-noiseifier) (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014).
Nevertheless, to conclusively rule out atomoxetine-related
changes in physiology as confounds, we repeated the key analyses
on the physiology-corrected data. All three global graph-
theoretical measures remained significant and in the same direc-
tion as reported above (all p values 	0.05). We also found
significant reductions in network degree in the same internet-
work connections (all p values 	0.05). Last, we observed a similar
contiguous cluster of significantly reduced inter-regional corre-
lations within visual cortex (all p values 	0.005, and cluster-
corrected at p 	 0.0001). Thus, our key results were unlikely to be
driven by atomoxetine-related changes in physiology.

Discussion
Using a pharmacological manipulation, we examined the effects
of increased extracellular levels of the catecholamines NE and DA
on resting-state fMRI connectivity in the human brain. First, we
found that our manipulation reduced the strength of inter-
regional correlations across three levels of spatial organization,
indicating that catecholamines reduce the strength of functional
interactions during rest. Second, this modulatory effect on the
structure of resting-state correlations exhibited a substantial de-
gree of spatial specificity, indicating that catecholamines differ-
entially reduce spontaneous correlations between select brain
regions. These two key findings are surprising in light of the
common understanding of the neurophysiology and computa-
tional function of catecholaminergic systems. They also identify
catecholaminergic neuromodulation as an important factor
shaping the spatial structure and strength of intrinsic functional
connectivity in the human brain.

Our first key finding is that atomoxetine, a selective NET
blocker that increases synaptic NE and DA levels (Bymaster et al.,
2002; Devoto et al., 2004; Invernizzi and Garattini, 2004; Swan-
son et al., 2006; Koda et al., 2010), reduced the strength of inter-
regional correlations. Specifically, atomoxetine reduced the
strength of connectivity globally (Fig. 1c), between nodes belong-
ing to distinct intrinsic connectivity networks (Fig. 2e), and be-
tween individual brain regions within the visual system (Fig. 3c).
This consistent pattern of results seems to be at odds with the
notion of a facilitative effect of catecholamines on brain-wide
signal transmission (Aston-Jones and Cohen, 2005; Eldar et al.,
2013). One possible explanation for this discrepancy lies in the
fact that, in our experiment, participants did not actively respond
to incoming sensory information. According to a recent theory,
the effects of NE on neural activity strongly depend on interac-
tions with local glutamate release (Mather et al., 2015). Accord-
ingly, enhanced NE may have qualitatively different effects
during task processing, associated with relatively high glutamate

Figure 5. Spectral BOLD characteristics and the relation with inter-regional correlations.
Left, Atomoxetine-induced changes in spectral amplitude for AAL brain regions that showed an
atomoxetine-induced increase (red) and decrease (blue) in inter-regional correlation strength.
Brain region and condition-averaged amplitude areas shown in black. Right, Mean correlation
between the region-averaged atomoxetine-induced change in coupling strength and fractional
amplitude of low-frequency BOLD fluctuations. Error bars indicate the SEM. **p 	 0.01.
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activity, than during states of relative cor-
tical quintessence (i.e., at rest), associated
with relatively low glutamate activity. In
line with this possibility, Coull et al.
(1999) showed dissociable effects of the �2-
adrenergic agonist clonidine on positron
emission tomography effective connectivity
obtained during task performance and dur-
ing rest. Whereas during task performance
clonidine increased connectivity between
frontal and parietal cortical regions, during
rest clonidine reduced connectivity from
frontal cortex to thalamus, and in connec-
tions to and from visual cortex. Two other
studies that used NE drugs also provided ev-
idence for regional reductions in connectiv-
ity strength during rest (McCabe and
Mishor, 2011; Metzger et al., 2015). These
studies, however, only used a small number
of seed regions to assess connectivity, and hence did not examine
large-scale topographical changes.

Our second key finding is that atomoxetine resulted in spa-
tially heterogeneous changes in inter-regional correlations. For
example, atomoxetine caused a reduction in the number of
strongly correlated brain regions between (but not within) dis-
tinct resting-state networks (Fig. 2e). Furthermore, the effect of
atomoxetine on inter-regional correlations was dependent on the
baseline level of coupling: the strongest functional connections
tended to show the largest connectivity reductions after atomox-
etine (Fig. 3d). How can such spatially structured effects of cat-
echolamines come about? First, recent anatomical tracing work
has suggested that the projection profile of the LC is more heter-
ogeneous than once thought (Schwarz and Luo, 2015). For ex-
ample, even though on the whole there is broad collateralization
within the LC-NE system, subpopulations of LC neurons selec-
tively innervate distinct brain regions (Chandler et al., 2014;
Schwarz et al., 2015). Moreover, subpopulations of LC neurons
that differ in their afferent projection profile also show marked
differences in their firing characteristics (Chandler et al., 2014).
The firing modes of LC neurons in turn have differentiable effects
on neuronal synchronization within the cortex (Safaai et al.,
2015). Importantly, LC neurons have been reported to corelease
DA (Devoto and Flore, 2006). Thus, spatially selective effects of
catecholamines on correlated fluctuations in the brain can be
achieved via a heterogeneous cortical innervation by the LC.

Second, heterogeneity in the effect of catecholamines on inter-
regional correlations could be achieved by regional differences in
the expression of different receptor types. For example, expres-
sion of the �2 receptor approximately follows an anterior to pos-
terior gradient (Nahimi et al., 2015), with particularly strong
expression in primary visual cortex (Zilles and Amunts, 2009).
Interestingly, we observed an anterior to posterior gradient in the
effect of atomoxetine on the strength of correlations (Fig. 3b).
Moreover, we found a pronounced reduction in the strength of
correlations between regions within visual cortex, and between
early visual cortex and the rest of the brain (Fig. 4). The similarity
between the spatial distributions of �2 receptors and the effects of
atomoxetine thus warrants further investigation into the rela-
tionship between specific NE receptor types and their influence
on correlated activity across the brain.

A number of limitations of the present study should be acknowl-
edged. First, we examined the effects of only one dose (40 mg) of
atomoxetine. Dose-dependent pharmacological effects of catecho-

laminergic drugs on neural function are not uncommon (Berridge
and Waterhouse, 2003). Future work on the neurochemical basis of
functional connectivity will need to examine dose-dependent effects
of atomoxetine, and other catecholaminergic drugs, with different
pharmacokinetic profiles. Second, we do not know whether atom-
oxetine would have similar effects on functional connectivity in clin-
ical populations characterized by disturbed catecholaminergic
function (e.g., attention deficit hyperactivity disorder and depres-
sion). Third, although we used BOLD activity as a proxy for neural
activity, the link between neuronal interactions and BOLD activity is
not entirely clear (Logothetis, 2008). Models of catecholamine func-
tion make predictions about how NE and DA should affect neural
communication. However, the translation of these predictions to
BOLD correlations is not straightforward. Last, we used an atlas-
based brain parcellation to investigate inter-regional correlations.
Thus, the spatial resolution of our analyses was restricted by the
resolution of the atlas. Future work, using voxel-level approaches, is
needed to investigate more fine-grained spatial effects of catechol-
amine levels on functional connectivity.

The synaptic effects of catecholamines have been relatively
well charted (Berridge and Waterhouse, 2003; Winterer and
Weinberger, 2004). However, there is considerable uncertainty
about how these low-level effects translate to system-wide func-
tional interactions. Recently, Safaai et al. (2015) provided an im-
portant first glimpse into how the LC-NE system modulates
spontaneous cortical activity and how this modulation in turn
affects sensory processing in anesthetized rats. Specifically, they
showed that LC bursts can both attenuate and enhance process-
ing of sensory stimuli depending on their timing relative to the
stimulus and the cortical activity state. However, the effects of
catecholamines on the large-scale communication between
distant brain areas and their neurophysiological underpinnings
remain exceedingly unexplored. Our finding that atomoxetine
reduced inter-regional correlations in a spatially structured
manner thus calls for novel work on the neural mechanisms that
produce such effects.

Theory and evidence indicate that the topography of intrinsic
fMRI correlations is dictated to an important extent by the fixed
anatomical connectivity of each brain region (Deco et al., 2011,
2013). That is, brain regions that are anatomically strongly con-
nected are more likely to show strong functional coupling than
those that are connected weakly or only indirectly. However,
within the constraints of physical connectivity, there is substan-
tial room for state-dependent movement in functional topologi-

Figure 6. a, Atomoxetine effect on pupil diameter. b, c, Correlation strength in the postatomoxetine condition binned by pupil
size, only for connections that showed an atomoxetine-related reduction in inter-regional correlation. Error bars indicate the SEM.
n.s., Not significant. *p 	 0.05. ***p 	 0.001.
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cal space (Allen et al., 2014; Zalesky et al., 2014; Barttfeld et al.,
2015). Our results identify NE and DA as important factors driv-
ing these movements, and thus suggest that spontaneous fluctu-
ations of catecholamine levels can serve to flexibly alter the
structure of spontaneous correlations both globally and in spe-
cific brain regions, around the anatomical backbone.
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